The Drosophila PAR-1 Spacer Domain Is Required for Lateral Membrane Association and for Polarization of Follicular Epithelial Cells
نویسندگان
چکیده
The Ser/Thr kinases of the PAR-1/MARK/Kin1 family are conserved regulators of polarity in epithelial and non-epithelial cells . Drosophila PAR-1 localizes laterally in the follicular epithelium of the ovary , where it has been shown to function at two distinct levels: It stabilizes the cytoskeleton and it regulates apical-basal polarity by directly inhibiting lateral assembly of the apical aPKC/Bazooka/PAR-6 complex . However, it has been unclear how lateral localization of Drosophila PAR-1 is achieved and whether this localization contributes to epithelial polarity in vivo. Here we show that, through its spacer domain, Drosophila PAR-1 accumulates on the lateral plasma membrane (PM) in cells of the follicular epithelium (FE). Rescue experiments indicate that in FE cells PAR-1 kinase activity is essential for all the described functions of PAR-1. In contrast, the spacer domain of PAR-1 is required for apical-basal polarity and growth control but is dispensable for microtubule (MT) stabilization. Our data indicate that the spacer domain of PAR-1 is required for lateral PM localization of PAR-1 kinase and for development of a polarized FE.
منابع مشابه
Apical, Lateral, and Basal Polarization Cues Contribute to the Development of the Follicular Epithelium during Drosophila Oogenesis
Analysis of the mechanisms that control epithelial polarization has revealed that cues for polarization are mediated by transmembrane proteins that operate at the apical, lateral, or basal surface of epithelial cells. Whereas for any given epithelial cell type only one or two polarization systems have been identified to date, we report here that the follicular epithelium in Drosophila ovaries u...
متن کاملIntegrins contribute to the establishment and maintenance of cell polarity in the follicular epithelium of the Drosophila ovary.
The generation of epithelial cell polarity is a key process during development. Although the induction and orientation of cell polarity by cell-cell and cell-extracellular matrix (ECM) interactions is well established, the molecular mechanisms by which signals from the ECM control cell polarity in developing epithelial tissues remain poorly understood. Here, we have used the follicular epitheli...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملPar-1 kinase establishes cell polarity and functions in Notch signaling in the Drosophila embryo.
The Drosophila protein kinase Par-1 is expressed throughout Drosophila development, but its function has not been extensively characterized because of oocyte lethality of null mutants. In this report, we have characterized the function of Par-1 in embryonic and post-embryonic epithelia. Par-1 protein is dynamically localized during embryonic cell polarization, transiently restricted to the late...
متن کاملaPKC Acts Upstream of PAR-1b in Both the Establishment and Maintenance of Mammalian Epithelial Polarity
BACKGROUND aPKC and PAR-1 are required for cell polarity in various contexts. In mammalian epithelial cells, aPKC localizes at tight junctions (TJs) and plays an indispensable role in the development of asymmetric intercellular junctions essential for the establishment and maintenance of apicobasal polarity. On the other hand, one of the mammalian PAR-1 kinases, PAR-1b/EMK1/MARK2, localizes to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005